UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2007 question paper

0620 CHEMISTRY

0620/02

Paper 2 (Core Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2007	0620	2

1 (a) ALLOW: correct names / correct formulae

	(i)	В	[1]		
	(ii)	E	[1]		
	(iii)	D	[1]		
	(iv)	E	[1]		
	(v)	C	[1]		
	(vi)	B+C	[1]		
	(vii)	A + F	[1]		
(b)	(i)	car exhausts / from vehicles ALLOW: from metal smelting NOT: from factories / from natural causes e.g. volcanoes NOT: from fuels if unqualified	[1]		
	(ii)	damage to brain / nervous system (in children) ALLOW: mental damage / poisonous / toxic / lung irritant NOT: harmful / lung cancers / poisonous to lungs / makes you ill / respiratory diseases / lung problems etc.	[1]		
(c)	ALL RE	ns sulphur dioxide / acid rain OW: sulphur burns to form acid rain IECT: carbon monoxide / dioxide causes acid rain = 0 IECT: sulphur causes acid rain = 0	[1]		
	effect of acid rain e.g. chemical erosion / chemical weathering / corrodes metals / damages trees [or plants] / kills trees [or plants] / damages limestone buildings / damages or kills plants [or animals] in lakes NOT: harmful / makes soils acidic / corrodes limestone [or buildings] / pollutant REJECT: global warming / affects ozone layer				
			[Total: 11]		

[Total: 11]

Page 3		Mark Scheme	Syllabus	Paper
		IGCSE – May/June 2007	0620	2
(a)		gen / N_2 ; en / O_2		[2]
(b)	(i) (carbon dioxide / CO ₂		[1]
	(ii)	water / H₂O		[1]
		O ₂ on left; correct balance		[2]
(c)	(i)	(Period) 3		[1]
		noble gases / inert gases ALLOW: group 0 / 8		[1]
	(iii)	correct electronic structure of argon 2.8.8		[1]
		inert / doesn't react / prevents (tungsten) filament from ALLOW: implication that argon produces light after exc current (discharge tubes) NOT: argon produces light when it reacts NOT: argon lights up		[1]
	(v)	22		[1]
(d)	169 IGN0	ORE: units		[1]
(e)	(i) 2	XeF₄O (atoms in any order)		[1]
	(ii) covalent			[1]
	NOT: double and single bonding			

2

	3			IGCSE – May/	June 2007	0620	2
3	(a)	(i)	2 on	both sides (NOTE: only one	e mark)		[1]
		(ii)	TON TON	nes from water / water won't Γ: arguments about pollution Γ: easily made / renewed ECT: found in air and water	ı	ole resource	[1]
		(iii)	exot	thermic			[1]
	(b)		bon d ter / H	lioxide / CO ₂ ; I ₂ O			[2]
	(c)	cor (if f	rect u	or each correct fraction; use <u>linked</u> to each specific france in incorrect mark cannot be			[2] [2]
		Fra Ref	n ction finery	1	Use fuel (alone or qu ALLOW: for hea	•	
		Na _l	phtha	- 1	feedstock for ch making specific	emicals / chemicals e.g. ethan	ie
		Par	raffin .	/ kerosene	oil stoves / heat feedstock for ch ALLOW: for coo NOT: fuel alone	king	
		Die	sel		fuel in cars / fue central heating NOT: fuel alone		
		Fue	el oil		fuel for ships an NOT: fuel alone	d power stations	
		Luk	oricati	ng fraction	lubricants / wax	es / polishes	
		Bitu	umen	/ residue	roads / sealing ı	roofs	
	(d)	(i)	mak (idea ALL	aking down of (larger) <u>hydrod</u> ing alkenes from larger alka a of large hydrocarbons to s OW: breaking down petrolet F: decomposing unless quali	nes maller ones) um fractions / hydrocarb		[1]

Mark Scheme

Syllabus

Paper

Page 4

Pa	Page 5		Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2007	0620	2
	(ii)	high temperatu ALLOW: heat REJECT: heat			[1]
		IGNORE: inco NOT: high pre	nium oxide / silicates; rrect name of catalyst		[1]
	(iii) correct structure of ethene			[1]	
		All atoms and	bonds must be shown		[Total: 13]
4 (a)	(i)	substance whi NOT: slows ra	ch speeds up (rate of) reaction te of reaction		[1]
	(ii)		ents / transition metals metals / named metals		[1]
(b)	(i)		labelled with time on horizontal ax	kis and use of full grid	[1]
		correct plotting Penalise 110 c	volume and t for time of points (-1 per error / omission) cm³ points only once		[2]
		smooth line go	ing through all points		[1]
	(ii)		•		[1] [1]
	(iii)	ALLOW: zinc a	p / hydrochloric acid is in excess and hydrochloric acid have comple finished / completed / HC <i>l</i> comple	•	[1]
(c)	(i)	comparative r	be) fast <u>er</u> / rate increases needed) ss time / reacts more		[1]
	(ii)	(speed would l (comparative r	oe) slow <u>er</u> / rate decreases		[1]
(d)	(i)	zinc chloride			[1]
	(ii)	lighted splint / pops / explode	-		[1] [1]
					[Total: 14]

Page 6		Mark Scheme	Syllabus	Paper
		IGCSE – May/June 2007	0620	2
(a)	electron			[1]
(b)	NOT: hig	of: s electricity / conducts heat / shiny / malleable / duct gh density / high melting point / high boiling point / h solid if qualified by mercury as exception		[2]
(c)	4 th box d	own ticked		[1]
(d)	(light) blu	sodium hydroxide; ue ppt; e in excess		[1] [1] [1]
	(light) blu	ammonia; ue ppt; n excess / forming (dark) blue solution		
(e)		wiring / water pipes / cooking utensils / coinage / a wires / for pipes	ny other sensible <u>s</u> ı	pecific use [1]
				[Total: 8]

5

Pa	ge 7	,	Mark Scheme	Syllabus	Paper				
			IGCSE – May/June 2007	0620	2				
(a)		assiuı m <u>ine</u>	m chlor <u>ide;</u>		[1] [1]				
(b)	(b) iodine lower in group / less reactive than chlorine / iodine less good oxidising agent ALLOW: bond between potassium and chlorine is too strong for iodine to react								
(c)	(i)	ALL	/ black; OW: purple black : brown / brown-black / purple		[1] [1]				
	(ii)		OW range of -200 to -90 (actual = -188); OW range of 1.6 to 4.0 (actual = 3.12)		[1] [1]				
(d)	(i)	9			[1]				
	(ii)	7			[1]				
(e)	kills de- ALI	bactoring tinning OW:	ble use e.g. in swimming pools/ water purification / eria / bleaching agent (for paper) / extraction of titarg scrap tinplate etc. making named chemicals e.g. making hydrochloric making halogenoalkanes / making CFCs / making wage treatment / cleaning	nium / acid /	[1]				

6

[Total: 10]

	Page 8			Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2007	0620	2
7	(a)	it is	belov	w the electrolyte		[1]
	(b)	gra	ohite			[1]
	(c) A			[1]		
	(d) aluminium is too reactive / a very reactive metal / above carbon in the reactivity series NOT: because carbon won't remove the oxygen from the oxide / won't reduce the oxide / won't react				series [1]	
	(e)	(i)	the a	aluminium oxide / the electrolyte		[1]
		(ii)	CO ₂			[1]
		(iii)		on is released as carbon dioxide / carbon dioxide is : it's getting oxidised / reaction between carbon and	_	[1]
	(f)	530	(kg)			[1]
	(g)	mol				[2]

[Total: 10]